
Real-Time GSM Broadcast Receiver
on a Cortex-M4 Microcontroller

Stefan Erhardt #, Felix Pflaum #, Robert Weigel #, and Alexander Koelpin ∗

#Institute for Electronics Engineering, Friedrich-Alexander University of Erlangen-Nuremberg
Cauerstrasse 9, 91058 Erlangen, Germany, Email: stefan.erhardt@fau.de

∗Chair for Electronics and Sensor Systems, Brandenburg University of Technology,
03046 Cottbus, Germany

Abstract— Recent microcontrollers provide enough com-
puting power to perform signal processing while still being
energy efficient and enable more flexibility than FPGAs. A
fully functional GSM broadcast receiver was implemented on
a Cortex-M4 microcontroller that is able to decode broadcast
control channel (BCCH) messages. With several algorithmic
optimizations it is able to operate in real-time in combination
with a Sub-GHz transceiver as RF front-end. The timing was
proven by measurements with an logic analyzer.

I. INTRODUCTION

In an earlier publication a GSM broadcast channel
receiver based on an ultra-low power Sub-GHz transceiver
was introduced [1]. It was shown that the transceiver can be
operated in a legacy mode for receiving and demodulating
GSM signals, while the signal processing was conducted
in MATLAB on a personal computer. For miniaturizing
the receiver the complete processing chain should now be
implemented on an ARM Cortex-M4 microcontroller.

Current state-of-the-art microcontrollers provide a 32-bit
RISC core with floating point unit (FPU) and DSP instruc-
tions with a current consumption less than 100 µA/MHz
while running at 80 MHz, thus enabling the opportunity
of serious signal processing in mobile applications [2].
Still, hardware specifically optimized algorithms need to
be found.

There are many possible applications for an ultra-low
power GSM broadcast receiver: Within the Internet of
Things it could be interesting to make use of the surround-
ing mobile network infrastructure, e.g. for a synchroniza-
tion to a base station’s clock that is typically derived from
an expensive rubidium atomic clock. A clock-harvesting
receiver was shown in [3]. For gaining true timestamps
the broadcast channel of the base station must be fully
decoded, therefore requiring extensive signal processing.

II. SYSTEM DESCRIPTION

The test platform consists of an STM32L476 microcon-
troller with power supply, debugging interface and USB
connection on one PCB and a Sub-GHz transceiver on an
exchangeable PCB (fig. 2). The transceiver is configured
to demodulate GSM downlink signals and recovers a clock

Sub-GHz
Transceiver

ARM
Cortex

M4

clock
data

SPI
GPIOs

clock

data

Fig. 1. Block diagram and input signals

and data signal, which is transfered to the microcontroller
via GPIO pins (fig. 1). The signal processing for sampling,
synchronization and decoding of the convolutional code is
fully implemented on the microcontroller and runs stand-
alone. For debugging and true time measurement purposes
several GPIO pins are accessible.

First the synchronization channel (SCH) is searched by
correlating with its training sequence and decoded by using
the Viterbi algorithm. The gained data contains information
about the timing within the multiframe structure. Finally,
all four broadcast control channel (BCCH) bursts can be
determined by correlating with their respective training
sequences. After deinterleaving and decoding them, cell
information data is available. A good reference for a deeper
understanding of the GSM protocol depicts [4].

Fig. 2. Sub-GHz transceiver (left) and microcontroller (right)



III. ALGORITHMS

A. Multiregister Shift Buffer

With every falling edge of the clock signal, an interrupt
on the microcontroller is triggered and the respective IRQ
handler is executed. Before reading in the new input bit,
the buffer that contains the previous bits needs to be shifted
by one, discarding the oldest bit. The shift buffer should
have the size of one GSM burst, so the array must be of
size 5 · 32 bit. The overflowing bits from each individual
register bit shift must be preserved in the previous registers
as can be seen in fig. 3.

buffer[0] buffer[1] buffer[2] buffer[3] buffer[4]

new input bit

Fig. 3. Multiregister shift buffer

The ARM Cortex-M4 architecture only provides a right
shift with carry instruction (RRX), whereas a left shift with
carry is required. The solution is an addition of each value
to itself, thus doing a multiplication by 2 or left shift by 1,
and making use of the carry flag. In assembly language the
full shifting process can be written as follows:
adds %r4, %r4
adcs %r3, %r3
adcs %r2, %r2
adcs %r1, %r1
adc %r0, %r0

After the shifting process, the new input bit can be
inserted into %r4. The registers can either be written back to
the memory or directly used for the following correlation.

B. Simplified binary cross-correlation

Before being able to decode the desired downlink chan-
nel, a temporal synchronization has to be accomplished.
Typically, a peak in the cross-correlation of the incoming
bit stream with a known synchronization sequence is
searched. For a discrete, complex input vector x and
a correlation sequence s a cross-correlation y can be
expressed by:

y[n] =

∞∑
m=−∞

x∗[m] s[m+ n] (1)

In order to calculate a positive and negative result, the
binary inputs x, s need to be in the bipolar set {−1; 1}.
With only real values and a finite s of length N , the
correlation at the current position (n = 0) can be simplified
as follows:

y =
N−1∑
m=0

x[m] s[m] (2)

For easier implementation on the hardware the input
vectors shall consist of elements in the unipolar set {0; 1}.

The relation between bipolar and unipolar elements is
considered with the substitution:

x{−1;1} = 2 · x{0;1} − 1 (3)

Furthermore, the multiplication can be substituted with
an XNOR function, that only returns ’1’ if both inputs are
identical:

y =

N−1∑
m=0

(
2 · (x[m] ⊕ s[m])− 1

)
=

= 2 ·

(
N−1∑
m=0

(x[m] ⊕ s[m])

)
−N (4)

Respectively, the cross-correlation result y can reach a
value:

−N ≤ y ≤ N (5)

After negating the XOR result for logical XNOR, the
summation in binary arithmetics corresponds to counting
the number of ’1’s or calculating the Hamming weight.
In computer sciences this function is also called popula-
tion count or popcount. The instruction set of Cortex-M4
does not provide a dedicated register popcount operation
like x64 processors do. Fortunately, there is an optimized
GCC implementation that takes twelve instructions on our
architecture.

For peak detection an unipolar correlation result is
sufficient. Thus the value range can be shrunk to unsigned
integers by omitting the multiplication and subtraction:

y =

N−1∑
m=0

(x[m] ⊕ s[m]) ; 0 ≤ y ≤ N (6)

0 20 40 60 80 100 120
−20

−10

0

10

20

30

40

50

60

70

25

30

35

40

45

50

55

60

65

position (bit)

cr
os

s-
co

rr
el

at
io

n

si
m

pl
ifi

ed
cr

os
s-

co
rr

el
at

io
n

Fig. 4. Cross-correlation from Matlab (left axis) and simplified
binary cross-correlation (right axis) of GSM input bit stream with
SB training sequence.



The result of the simplified binary cross-correlation in
comparison with the xcorr2 Matlab function is shown
in fig. 4. Both curves are superimposable, only the axis
scaling is different.

On a 32 bit architecture a bit-wise XOR operation
requires only one clock cycle for the calculation of 32
bits. The training sequence of a SB has a length of 64 bit.
According to (6) the summation can be split into 2 · 32 bit
operations:

y =

31∑
m=0

(x[m] ⊕ s[m]) +

63∑
m=32

(x[m] ⊕ s[m]) (7)

Finally, a 64 bit simplified binary correlation can be
written in C code with the buffer and the synchronization
sequence being split up into arrays:

y = popcount(~(input_buffer[0] ^ sync_seq[0]));
y += popcount(~(input_buffer[1] ^ sync_seq[1]));

C. Viterbi

The Viterbi algorithm is typically used for decoding
convolutional codes by reconstructing the most likely en-
coded input. The algorithm consists of two steps: Calculate
a forward state history matrix and then trace back the
matrix, choosing the most likely, allowed path. Therefore,
it utilizes the redundancy for forward error correction [5].

Initially, several look-up tables have to be set up: A
16×2 matrix that describes the state transitions of the en-
coder; a 16×2 matrix that contains the 2 bit outputs of the
encoder; a 16×16 matrix that holds the originally encoded
input bits. Additionally, the state history matrix has to be
allocated in the memory. It has the size of the number
of payload bits times number of states. For the SCH it
results in 39×16, for the BCCH 228×16. Each matrix is
a two dimensional array with data type uint8_t, e.g. the
state history matrix consumes 228 · 16 · 8 bit respectively
912 32-bit registers.

At the first part the state history matrix has to be filled
with the surviving previous states. For that purpose the bit
stream with a length of twice the payload bits is read in
a loop in 2-tuples. In a second, inner loop every state is
stepped through. For each state both possible inputs 0 or
1 are encoded and the Hamming distance aka popcount
of this encoded output to the current received 2-tuple is
calculated. Now the respective state transition is looked up
in the state transition table and the previously calculated
Hamming distance is saved as the so-called branch metric.
Subsequently, the branch metric is accumulated in an array,
since a certain state can have several possible predecessors.
If the accumulated branch metric is cheaper than the value
saved before, it is now saved into the branch metric instead
and the state that lead to it is saved in the state history
matrix. In the end of the first part, a fully filled state history
matrix is available.

The second part is the trace back: Now the state history
matrix that contains the surviving predecessor to each
position is stepped through from its end to the beginning.
The originally encoded message can be reconstructed by
looking up the respective bit in the input matrix.

D. CRC and Deinterleaving

The decoded messages contain a CRC-encoded check-
sum to ensure data integrity. It is calculated by dividing the
message with the respective CRC polynom in a loop, until
the rest equals the polynom itself, if no bit error occurred.

Whereas the SCH can be decoded and CRC checked
right after its appearance, the BCCH is both spread over
four bursts and bit interleaved for higher robustness. There-
fore, all bursts have to be received and deinterleaved before
the Viterbi decoding starts. The deinterleaving can already
be accomplished after the reception of each BCCH burst,
filling up the data vector successively.

IV. MEASUREMENTS

For all measurements the GCC compiler optimization
was set to "optimize most" (-O3) and the instruction cache
was enabled. The basic microcontroller initialization was
conducted using the hardware abstraction layer (HAL)
provided by ST.

A. Memory

The memory footprint can be evaluated with the tool
arm-none-eabi-size that shows the code size in this format:

arm-none-eabi-size "project.elf"
text data bss dec hex filename
11720 120 1952 13792 35e0 project.elf

’text’ describes the code size in bytes. ’data’ is used for
initialized variables. ’bss’ shows the size of global and
static variables. ’dec’ contains the sum of text, data and
bss. ’hex’ is the hexadecimal representation of dec.

By executing arm-none-eabi-size on *.o files, the foot-
print of single algorithms can be determined:

text data bss dec hex filename
2368 0 2 2370 942 cc1200.o
248 0 0 248 f8 shiftbuffer.o

1945 0 36 1981 7bd gsm.o
1828 0 0 1828 724 viterbi.o
280 0 0 280 118 crc.o

cc1200 contains all register settings and functions to sim-
plify read and write to the CC1200 transceiver. shiftbuffer
holds the GPIO interrupt callback routine and shift buffer
handling. In gsm the simplified bit-wise correlation, the
GSM bursts’ bit mapping and the BCCH deinterleaving
were implemented. viterbi contains the complete Viterbi
decoder and crc two distinct functions for error checking
the decoded SCH and BCCH data.

The basic GSM stack requires 6707 bytes. The remain-
ing 7085 bytes are used by the microcontroller initializa-
tion and service routines.



clock

Idata

II III V V V Vcorrelation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

IV VI VI VI VII

time (ms)

decoding,
deinterleaving,

CRC

clock

Idata

II III V V V Vcorrelation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

IV VI VI VI VII

time (ms)

decoding,
deinterleaving,

CRC

Fig. 5. Time signals tapped with logic analyzer

B. Time measurements

In order to determine the code efficiency, it is not
sufficient to only count the number of machine code
instructions, since reading and writing from or to the
memory could require more time than one clock cycle,
depending on the memory location. Therefore, true timing
measurements were taken with a logic analyzer. A mi-
crocontroller pin was toggled at selected positions in the
source code and sanity checked in the disassembly.

The time signals of clock, data and two GPIOs are
depicted in fig. 5. The clock is a rectangular signal that
displays as a solid box, since the time scale is too wide to
resolve the signal. The receiver was switched off after syn-
chronization and between the four BCCH bursts. Phases of
interest are numbered and enlisted in the following table:

phase description duration
I FCCH (one burst of zeros) 577 µs
II Real-time correlation of SCH sync

pattern
variable

III SCH sync pattern found
(correlation exceeds threshold)

-

IV Decoding of SCH data and CRC
checking

(534 + 4) µs

V BCCH sync pattern found
(correlation exceeds threshold)

-

VI BCCH data deinterleaving 112 µs
VII BCCH data deinterleaving, decoding

and CRC checking
(112 + 1033 + 54) µs

In phase I the frequency correction channel (FCCH)
contains a clearly visible set of 142 zeros.

In phase II and V a real-time correlation has to be
performed in order to find the SCH/BCCH synchronization
sequences. The clock signal fires interrupts with the GSM
bit rate R, so the correlation needs to be executed at least
within tmax:

tmax = 1/R = 1/277.833 kbit/s = 3.60 µs (8)

Following times where measured:
• interrupt handler: 0.45 µs
• shiftbuffer: 0.40 µs
• correlation: 0.95 µs
Therefore, the total sync search time amounts to 1.80 µs

and does not exceed the maximum time from (8).

V. CONCLUSION

It was shown that real-time digital signal processing for
receiving GSM broadcast channels can be implemented on
an ultra-low power Cortex-M4 microcontroller. A simpli-
fied binary correlation was mathematically derived from
the definition of the cross-correlation and implemented on
the target hardware. With optimizations in assembly code
the calculation time for these operations could be undercut
by half of the maximum available time. Furthermore, GSM
broadcast messages can be decoded and checked by an
viterbi decoder and CRC.

In future work the system could be miniaturized and
optimized for energy consumption.

ACKNOWLEDGMENT

This work is funded by the German Research Founda-
tion (DFG) under grant KO 4340/5-1.

REFERENCES

[1] S. Erhardt, R. Weigel, and A. Kölpin, “Receiving GSM Broadcast
Channels with an Ultra-Low Power Sub-GHz Transceiver,” in 2017
47th European Microwave Conference, October 2017, pp. 380–383.

[2] STMicroelectronics, Ultra-low-power ARM Cortex-M4 32-bit
MCU+FPU (datasheet), 2017. [Online]. Available:
http://www.st.com/resource/en/datasheet/stm32l476rg.pdf

[3] J. K. Brown and D. D. Wentzloff, “A GSM-Based Clock-Harvesting
Receiver With -87 dBm Sensitivity for Sensor Network Wake-Up,”
IEEE Journal of Solid-State Circuits, vol. 48, no. 3, pp. 661–669,
March 2013.

[4] J. Eberspaecher, H. Voegel, C. Bettstetter, and C. Hartmann, GSM –
Architecture, Protocols and Services, 3rd ed. Wiley, 2009.

[5] G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE,
vol. 61, no. 3, pp. 268–278, March 1973.


